

Subsurface Technology for Electric Pathways (STEP) Project Final Report

Innovate UK

September 2022

elementenergy an ERM Group company Sarah Clements Sam Reeves Oliver Robinson Celine Cluzel

Office for Zero Emission Vehicles

Innovate UK

elementenergy

Report Overview

- Trojan Energy has designed a novel chargepoint that sits flat and flush with the pavement
 - Residents can charge their electric vehicles (EVs) on the street outside their home without permanent infrastructure at the pavement edge
- In 2019, Trojan Energy and project partners won funding from OZEV/IUK for the design, manufacture and first realworld trial of 150 chargepoints – the Subsurface Technology for Electric Pathways (STEP) project
- The trial is now live throughout the London Boroughs of Brent and Camden
 - The trial is being monitored on an ongoing basis
 - Feedback from the trial so far has been overwhelmingly positive
- Results from the trial and resulting consumer research will feed into Trojan Energy's future strategy
- This report summarises the project and results so far

Contents

Section	Pages
Introduction	3-10
Site Selection and Recruitment	11-16
Utilisation to date	17-19
Key Achievements	20-25
Resulting Innovations and Projects	26-29
<u>Next Steps</u>	30-31
Appendix (Project Picture Gallery)	32-36

Introduction

Site Selection & Recruitment Utilisation – to date Key Achievements Resulting Innovations and Projects Next Steps STEP Project Picture Gallery

75% of private vehicle charging is done at home as it is cheap and convenient This raises the question – how can we ensure those without off-street parking aren't disadvantaged?

Charg	ing methods:		Primary "hom	e" chargepoint types			
		A	a 🚘	면 면 면) 	
	Charging type	Home off-street charging	Residential on-street charging	Residential charging hub	En-route charging	Destination charging	Workplace charging
	Use case	Charging at home in a private driveway, garage, or residential car park, typically overnight	Charging at a public on-street chargepoint near to the driver's house, typically overnight	Charging at public chargepoints in the driver's local area. Can be fast (overnight) or rapid (similar to petrol refueling)	Charging along major routes or main roads in urban areas. Rapid charging means quick turnaround times	Charging in car parks at the end of an outward journey	Charging while parked at workplace
	Typical location	Driveway, garage, residential car park	On residential roads	Along urban roads, public car parks, forecourts etc.	Forecourts at services and other sites near main roads	Public car park, supermarket, shopping centre etc.	Employee car park
	Typical charging speed	Slow (3-7kW)	Slow - Fast (3-22kW)	Fast & rapid (7-50kW)	Rapid (50kW+)	Slow, fast & rapid (3-50kW+)	Slow (3-7kW)
	Who is deployment led by?	Homeowner	Council	Council or private sector	Private sector, some Council involvement	Private sector, some Council involvement	Employer

Trojan Energy offers a solution for those without off-street parking to charge at home with their novel, low-profile on-street charging technology being trialled in the STEP project

Source: Element Energy

Trojan Energy technology

- The Trojan Energy chargepoint sits flat and flush with the pavement, meaning there is no additional permanent street furniture
- Each EV Driver receives their own lance which is inserted into the chargepoint and plugged into the car to start charging
- Up to **15 chargepoints can be installed in parallel** covering entire streets and removing the need for dedicated EV parking bays
- The charging system has been designed with input from Disability Rights UK and the Royal National Institute of Blind People to ensure pavements remain accessible for all road users
- The STEP project is the **first real-world demonstration** of Trojan Energy's flat and flush chargepoints

The flat and flush chargepoint

The lance plugged into a chargepoint

For more information on the Trojan Energy chargepoints and the STEP trial, visit: www.trojanenergyltd.com The Trojan Energy technology provides significant benefits compared to traditional on-street chargepoints including the lack of permanent street furniture

Key aspects of the Trojan Energy technology

The chargepoint:

- The system consists of a chargepoint that is installed flat and flush with the pavement and a 'lance' which the user inserts into the connector
- **15 chargepoints** are deployed along a stretch of street, via one grid connection
- Fast charging up to 22kW
- Anyone can park in these bays **no dedicated bays** for EV charging

The Lance:

- Everyone in the trial receives their own lance
- This is inserted into the chargepoint and plugged into the car to start charging
- The lance is removed and stored in the user's car or home so that when no vehicles are charging there is no additional street clutter at the kerbside

The Portal:

• Allows customers to control their charging online (currently online only but will be moving to a downloadable App)

STEP project overview

To make charging easier for customers, Trojan Energy developed an online portal through which users can control and monitor their charging

Trojan Energy portal

- Trojan Energy have developed an online portal where users can control and monitor their charging
- On the portal, users can:
 - Monitor current charging sessions (duration, energy charged, estimated miles added and charging speed)
 - Check past charging sessions including downloadable monthly bills
- The portal currently only exists online and **will be developed into a downloadable app** in the near future
- There is **no requirement to use the Trojan Energy portal in order to charge** plugging the lance into a car automatically starts charging

Example portal display

The team: delivery of the STEP project has been achieved by 8 partners each with a unique role and responsibility

Partner	Role	Tasks
elementenergy an ERM Group company	Project manager, lead on public engagement & commercialisation	Coordinated with the project team to ensure smooth communication and consistent project progress
TROJAN ENERGY LTD	Chargepoint manufacturer and operator	Designed, manufactured and installed the chargepoints Oversaw communication with subcontractors Developed commercial opportunities
😁 Brent	Host of EVCPs, lead local authority	Oversaw installation of the 90 chargepoints in Brent, ensuring local requirements are met
Camden	Host of EVCPs	Oversaw installation of the 60 chargepoints in Camden, ensuring local requirements are met
UK Power Networks Delivering your electricity	Distribution Network Operator	Provided insight into the installations from DNO perspective Connected chargepoints to the electricity grid
UNIVERSITY OF LEEDS	Consumer Research Lead	Developed and analysed pre-trial and post-trial surveys for consumers
octopus energy	Energy supplier for trial	Provided insight from electricity supplier perspective Supplied electricity for the trial
Birmingham City Council	Research partner for potential future installations	Provided insight into how on-street charging infrastructure differs outside of London

In the STEP project, Trojan Energy chargepoints are being trialled across the London Boroughs of Brent and Camden

	STEP (Brent + Camden)	Brent – lead local authority (LA)	Camden
Key metrics:	TROJAN ENERGY LTD	😁 Brent	Camden
No. of chargepoints	 150 chargepoints total across 10 hubs 15 chargepoints installed per hub 	 90 chargepoints across 6 hubs Two recruitment areas 	 60 chargepoints across 4 hubs Two recruitment areas
No. of trial participants	 150 EV Driver trial participants Significantly exceeded overall target One EV Driver per chargepoint 171 additional Observer trial participants: local residents providing feedback on the trial Observers are affected by the chargepoints in their local area but don't use them 	 40 EV Driver trial participants 70 Observer trial participants 	 110 EV Driver trial participants: High demand for chargepoints due to high EV ownership 101 Observer trial participants
Additional offerings	 Additional technology offerings: Smart charging in Brent De-ICEr software in Camden Future work: Integration of chargepoints with car clubs Merging charging and home electricity bills for Octopus Energy customers 	 Smart charging trialling in Brent through BEIS funded trial Customers can access cheaper electricity costs by charging overnight 	 De-ICEr software allows users to check availability of chargepoints via the Trojan Energy online portal Funded outside of this project

Introduction

Site Selection & Recruitment

Utilisation – to date

Key Achievements

Resulting Innovations and Projects

Next Steps

STEP Project Picture Gallery

STEP trial streets were selected based on a wide range of criteria including demand for chargepoints and suitability of sites

Draft list of streets

- An initial draft list of streets was developed early on in the project
- The streets were selected based on a variety of factors:
 - Local demand for chargepoints¹
 - **Controlled Parking Zones** (CPZ)
 - Data on local EV ownership, provided by the local authority
 - Consideration of Heritage status of some areas in Camden and the requirements for installation within these areas
- The recruitment areas were finalised based on CPZs and trial streets were required to be within these areas

Final streets

- Using the draft list of streets, site assessments were completed to determine the suitability for Trojan Energy chargepoints
- Site assessments involve:
 - Assessment of other street furniture (e.g. lampposts, benches) and trees to determine current levels of clutter on streets
 - Ground Penetrating Radar was used to reveal congestion with utilities underground
 - UKPN helped to determine grid connection suitability
- The final outcome resulted in a list of 10 streets

Chargepoint locations

- Within these final streets, the location of the chargepoints was determined by further analysis, including:
 - Additional Ground Penetrating Radar and site digging to find areas with no congestion with utilities underground
 - Deciding location of the Trojan
 Energy cabinet to minimise
 disruption of the local area
- During this process, it was decided that some charging hubs would be split across two streets

Trojan installation streets in Brent across two areas, Harlesden and Kensal Rise

Note: Streets in Kensal Rise are within a Controlled Parking Zone (CPZ). Only participants with the correct CPZ permit are able to use these chargepoints Streets in Harlesden are not within a CPZ and are therefore open to all EV Driver participants Base map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org Brenz

Trojan installation streets in Camden across two areas, Hampstead and Swiss Cottage

Note: All streets are within a Controlled Parking Zone (CPZ). Only participants with the correct CPZ permit are able to use these chargepoints. Base map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org

14

Cannden

STEP trial recruitment significantly exceeded expectations

Recruitment aims have been well exceeded, with 150 EV Drivers signed up to participate (the maximum possible for the STEP trial)
Additional participants are now being added to a waiting list, which currently includes over 25 EV Drivers

Observer count includes EV Driver participants beyond the 150 limit, currently on the waiting list Base map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org

The distribution of EV Driver sign-ups and chargepoints across the two boroughs results in 4 trial areas with varied EV Driver to chargepoint ratios

The Swiss Cottage area in Camden has 15 times more EV Drivers per chargepoint than the Harlesden area in Brent

This difference in these ratios will be used to assess key research questions in the trial, for example:

- 1. What is the availability of the chargepoints? Can EV Drivers always use chargepoints on their preferred street?
- 2. Do Trojan Energy chargepoints negatively affect parking on the streets they are installed on? Does this vary by street?

>> Results from these key research questions will feed into Trojan Energy's future strategy

Introduction

Site Selection & Recruitment

Utilisation – to date

Key Achievements

Resulting Innovations and Projects

Next Steps

STEP Project Picture Gallery

During trial recruitment and installation, an early trial of 5 EV Drivers took place on Mortimer Road in Brent and provided invaluable feedback to the full trial

Early trial on Mortimer Road in Brent

- From July 2021 March 2022, 5 users on Mortimer Road in Brent were given a prototype lance to charge on one of 5 installed prototype chargepoints
- These users provided invaluable feedback which has fed into the full trial of 150 chargepoints
- In total, these 5 users completed over 250 charging sessions within this period, charging over 4,800 kWh (approximately 14,500 miles)

Charge by user (% of total kWh)

User 1 is a taxi driver and therefore has very high mileage and charged on a Trojan Energy chargepoint almost daily

elementenerav

an ERM Group company

The full trial of 150 chargepoints launched in April 2022 and has so far received positive feedback from EV Drivers and Observers

Full trial in Brent and Camden

- From April 2022, the full trial of 150 chargepoints is live
- The trial is capped at 150 EV Driver participants (1 per chargepoint). In future work, Trojan Energy expect a higher number of users per chargepoint, and therefore higher utilisation
- By June 2022, 53 users had charged over 283 charging sessions, charging nearly 5,000 kWh (approximately 15,000 miles)

Charge by users (kWh)

The top 10 users account for just 19% of users who have charged so far, but have 56% of charging consumption to date

- In Camden, the most popular hubs so far are Willow Road and Willoughby Road
- In Brent, the most popular hub so far is Mortimer Road
- The top users tend to use the same chargepoint(s) when they charge
 - The top 5 chargepoints have been used for over 25% of all charging so far

Introduction

Site Selection & Recruitment

Utilisation - to date

Key Achievements

Resulting Innovations and Projects Next Steps STEP Project Picture Gallery Acronyms

STEP project key achievements and lessons learned by task (1/2)

	Key achievements	Key lessons learned
Design and Manufacture	 Design, manufacture and certification of Trojan Energy's novel chargepoint system – lance, connector and cabinet A prototype technology was produced for key learnings before mass manufacturing 150 chargepoints/lances and 15 cabinets manufactured 	• Trialling five prototype versions of the system in a real- world situation provided invaluable learnings and improvements to the final technology design
Recruitment and Engagement	 STEP customer offer developed, and engagement material created Recruitment completed with 150 EV Driver participants – reached the maximum limit for the trial Ongoing engagement with trial participants – including training before first use 	 Engaging with the community ahead of works is important – particularly with residents whose property is close to the chargepoints Important to keep participants aware of any updates to the trial so that the community remains engaged
Site Preparation and Installation	 Detailed site assessment for each street – confirming lack of other infrastructure below the surface, suitability for grid connection and, in the case of Camden, not impacting heritage areas Civils and electrical work of all cabinets across Brent and Camden complete 	 There are many nuances involved in site selection which will affect chargepoint installation and usage, including: Availability of parking on streets Congestion with other street furniture on the pavement and other utilities underground Suitability for additional grid connection Heritage sites require extra work to ensure that the technology blends in with the streetscape

STEP project key achievements and lessons learned by task (2/2)

		Key achievements	Key lessons learned
Commissioning and Operation		 Safety testing of all cabinets on-street completed Billing mechanisms successfully tested Developed portal for customers to select their charging preferences and see their billing 	 Users have noted the importance of online portal, particularly for checking billing, and have provided feedback on what else they would like on the portal
Monitoring	<u>ılı.</u>	 Collection, monitoring and live analysis of chargepoint utilisation data Monitoring log for issues and maintenance completed 	 By collecting and reporting utilisation data to the funding bodies, Innovate UK and OZEV, Trojan Energy can contribute to wider learnings and knowledge sharing across the EV sector
Consumer Research and Dissemination		 Developed pre- and post-trial surveys for all participants Trojan Energy and the STEP project have received wide press coverage in the UK and international media 	 Spending time to carefully construct surveys is key to monitoring trial success and adds value to future projects Ensuring high customer response rate for surveys via offering incentives and sending reminders is key

STEP key achievements by partner

Developed technical knowledge of on-street charging as well as the key next steps required for future on-street chargepoint deployment

elementeneray

ERM Group company

Trojan Energy have grown significantly during the STEP project and are continuing to expand

Trojan Energy team

Trojan Energy's team is growing:

- At the start of the STEP project, Trojan Energy had 4 full-time employees
- Now, Trojan Energy has over 25 employees and is aiming for 40 by end of 2022

Additional projects

Several projects have followed on from STEP (New partner)

- 1. DoorSTEP/Aon
 - working with EE, Brent Council and Oxfordshire County Council
- 2. <u>SmartSTEP</u>
 - working with Landis+Gyr, EE, Brent Council, Octopus
 Energy, UKPN and University of Leeds

3. <u>De-ICEr</u>

Trojan Energy funded, *Cleverciti* parking technology company are subcontractors

Commercial opportunities

Commercial opportunities have significantly increased:

- Discussions ongoing with many Local Authorities and businesses across the UK
- Expanding market position in the UK with sights on the first international project
- Over 200 requests for a Trojan Energy chargepoint installation internationally
- Post-trial contract to be agreed with Brent and Camden after trial has been assessed

Intellectual property

Intellectual Property (IP) generated:

- Internationalised flat and flush patent
- Broken out some backend software from the patent
 now a separate patent
- Applied for IP on De-ICER and Aon (STEP led to these)

Introduction

Site Selection & Recruitment

Utilisation – to date

Key Achievements

Resulting Innovations and Projects

Next Steps

STEP Project Picture Gallery

De-ICEr software

- As an additional offering, Trojan Energy developed De-ICEr as part of the STEP trial ۲
- De-ICEr technology uses on-street sensors, provided by Cleverciti, to detect availability of parking spaces
- Users can check availability of chargepoints via the Trojan Energy portal, and can request to be notified once one becomes available

De-ICEr functionality

Benefits of De-ICEr

- Increases utilisation of the chargepoints ۲
- Saves time for users by letting them know when chargepoints are available
- **Removes need for EV-only parking bays**

SmartSTEP summary

- BEIS are interested in testing charging using smart meters in an on-street context
- Chargepoints in Brent have been set up to allow smart charging
- SmartSTEP offers the chance to capture lower prices for smart charging as well as trial using charge control events* through the smart meter to limit demand at peak times
- Cheaper charging costs incentivises overnight charging

Charging will cost **35p/kWh during the day outside of off-peak periods**, and will be reduced to **15p/kWh during off-peak periods** for four hours overnight 00:30-04:30

SmartSTEP customers are able to choose from three different charging options:

- 1. Plug and play charge straight away as soon as you plug your lance in
- 2. **Delayed charging** schedule your charging to start at 00.30 to make the most of the low-price electricity. You can also select an option to charge for only the hours where the price is 15p/kWh
- 3. Smartcharge your Trojan portal will optimise your charging to reduce your costs and support the grid where possible
- >> Each of these charging options can be selected in the Trojan portal. Default preference can be changed any time

SmartSTEP Trial - Smart EV charging in a public setting - Trojan Energy

*in charge control events, charging speed is reduced. This can be overridden by users if they need charge immediately

DoorSTEP is another Trojan Energy project in parallel, involving the installation of a single chargepoint connected to a home energy supply

13 Hosts

18 Secondary Users

Office for Zero Emission Vehicles

Progress to date

- Designed, developed and manufactured the first Aon chargepoint units
- 21 users across Brent and Oxfordshire have signed up to have an Aon chargepoint installed outside their property
- **18 Secondary Users** in Brent have signed up to **use chargepoints installed outside other primary user's properties**

Introduction

Site Selection & Recruitment

Utilisation - to date

Key Achievements

Resulting Innovations and Projects

Next Steps

STEP Project Picture Gallery

Thank you to the Office for Zero Emission Vehicles (OZEV) and Innovate UK (IUK)

Next steps

- All project partners have expressed an interest in working together again and many are doing so already across other projects
- The STEP trial in Brent and Camden is continuing to allow all project partners and trial participants to fully assess the Trojan Energy chargepoints and their impact
- At the end of the trial, Brent and Camden councils will decide post-trial arrangements for the chargepoints
- Later in 2022, trial participants will be asked to complete post-trial surveys on their experience with the Trojan Energy chargepoints in their area
 - Results of this post-trial survey will be key in determining the success of the trial

More information

- For further information on Trojan Energy and the STEP project, see:
 - Trojan Energy's Website: <u>www.trojanenergyltd.com</u>

Thank You

Many thanks to OZEV and Innovate UK for funding this project and providing guidance where needed The STEP project is part of the Innovate UK On-Street and Wireless Charging cohort Special thanks also to our Monitoring Officer, Martin Tillin, who has been instrumental to the successful operation of the project Introduction Site Selection & Recruitment Utilisation – to date Key Achievements Resulting Innovations and Projects Next Steps STEP Project Picture Gallery

Demonstrating the flat & flush chargepoint

Launch day in Camden

Innovate UK, with a lance

Introduction Site Selection & Recruitment Utilisation – to date Key Achievements Resulting Innovations and Projects Next Steps STEP Project Picture Gallery

List of a	cronyms used in this report
BEIS	Department for Business, Energy and Industrial Strategy
СРО	Chargepoint Operator
CPZ	Controlled Parking Zone
DNO	Distribution Network Operator
EE	Element Energy
EV	Electric Vehicle
EVCP	Electric Vehicle Chargepoint
ICE	Internal Combustion Engine
IP	Intellectual Property
IUK	Innovate UK
kWh	Kilowatt hour
LA	Local Authority
OZEV	Office for Zero Emission Vehicles
STEP	Subsurface Technology for Electric Pathways
UKPN	UK Power Networks

