Moving beyond the hype to meaningful practice in the Circular Economy

Kathleen Sellers, PE

ERM

Kate Sellers

- As a Technical Fellow at ERM, I work with clients to develop and execute Circular Economy and product sustainability programs
- Teach product stewardship at Indiana University and product sustainability at Harvard University Extension School
- Education
 - BS, Chemistry, Indiana University
 - MS, Environmental Engineering, University of Massachusetts

Agenda

- Foundation
- Frameworks
- Practice

The phrase "Circular Economy" seems to be everywhere, from policy statements to company sustainability reports. Pressure to make more sustainable products grows. But how does a company avoid the pitfalls of greenwashing or wasted effort to turn these theoretical constructs into meaningful practice? This session will demystify concepts and provide attendees with practical tools to define strategy and related tactics. We will explore emerging frameworks that define participation in the Circular Economy, using case studies to demonstrate practical alignment of Circularity precepts with product types and business strategy.

Call to Action

Between 2015 and 2021, 70% more virgin materials were extracted than what the Earth can safely replenish.

Our take-make-waste economy consumes 100 billion tonnes of materials a year and wastes over 90%.

70% of all global greenhouse gas emissions are related to material handling and use.

(Circle Hub, 2022)

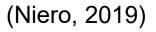
Foundation

P S X .org

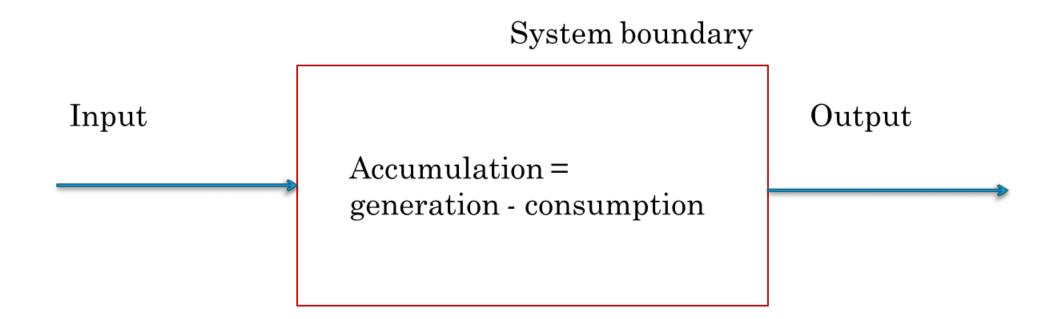
Definition

Scale varies: regions/countries, company and/or products.

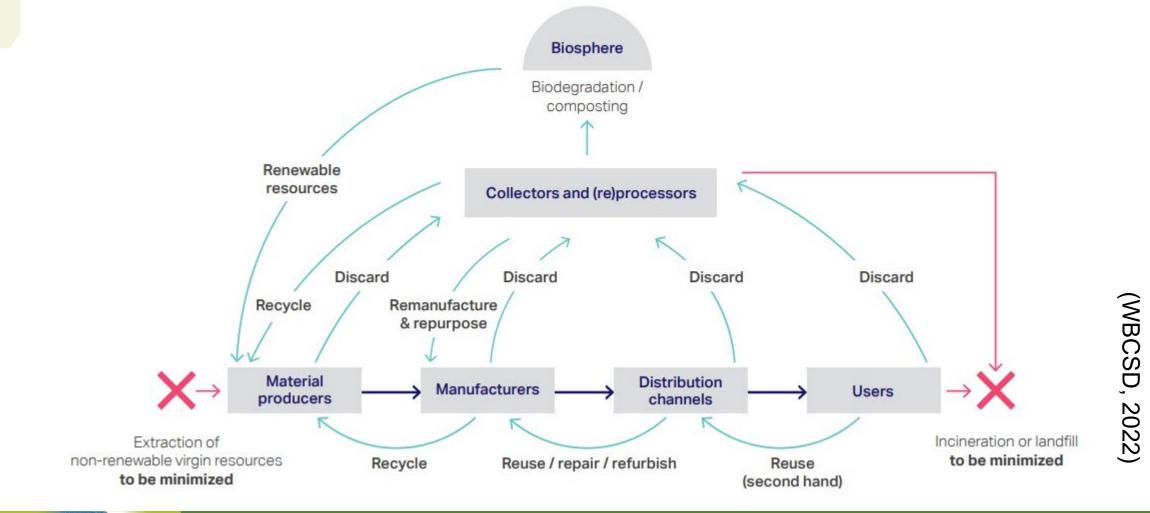
Design out Waste and Pollution Keep Products and Materials in Use


Regenerate Natural Systems

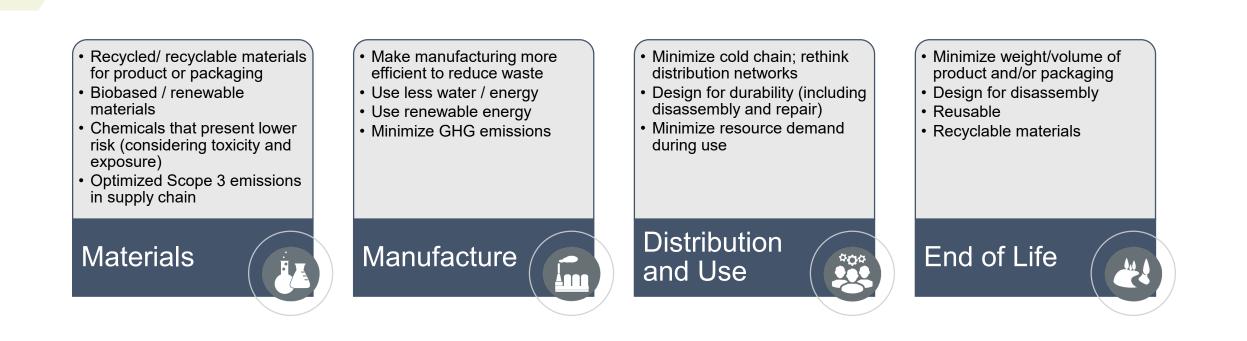
(Ellen Macarthur Foundation, undated)


Challenge #1: Defining a Program

"The debate on the most suited metrics for CE is very much open, no consensus has been reached yet which creates a subjective methodological framework for assessing CE."


Essential Concept: Mass Balance

At each step in the product life cycle, we can account for the use of energy and raw materials (input), and the waste generated solid, liquid, wastewater, air emissions (output).


Essential Concept: Material Flow

P S X

Is it just about generation and reuse of waste?

(For an interesting survey of factors considered, see Kristensen and Mosgaard, 2020.)

Challenge #2: Building a Program

It can be appealing to start with the "fun stuff", digging into the data and the science. Successful programs require planning and structure.

Planning	Executing	Assuring	Sustaining
 Ambition level Goals/ components Metrics / KPIs Management support 	Systems and processesToolsTraining	 Certifications and performance Assurance Management review 	 Communications Continual improvement

Developing a strategic program

1. Identify drivers and strategic goals

- Determine level of ambition and strategic goals, considering
- Business goals
- Stakeholder
 considerations
- Sustainability goals
- Determine scope and boundaries
- Consider aiming toward product claims
- Develop executive support

- Regulatory requirements
- Customer requirements
- Consider:
- Sourcing: renewable, recycled

2. Identify focus

based on

business and

sustainability

value

- Greener chemistry
- Carbon and other resources
- Process waste
- End of life impacts (e.g., recyclable)
- Handprinting, i.e., accounting for positive value

- Examples:
- Relevant frameworks and certifications

3. Define

methodology to

fit the focus

- Product Life Cycle Assessment (LCA)
- Custom scoring tool
- Alternative business models, such as adding services to a product line, leasing rather than selling, changing relationship with customers or partners in value chain, and/or additional data collection

 Engage internal and external stakeholders

4. Develop

process and

tools

- Integrate with existing processes
- Develop fit-for-purpose processes/ tools / support for marketing materials
- Determine measures of success / KPIs
- Engage and train teams

• "Start small, grow big"

5. Implement

program

- pilot first and then scale up
- Measure business
 impact
- Build momentum, internally and externally, by telling success stories
- Learn from program experience: modify and extend if appropriate to other products
- Celebrate success

Where do I start?

Determine level of ambition and goals

P S X

Business goals	Stakeholder concerns	Sustainability goals	Regulatory requirements and other norms
 Innovation High volume sales; aim of market advantage and new customers Plans for expansion or renovation of facilities Potential ROI of minimizing resource use or waste generation Brand positioning against competitors 	 Customer expectations, e.g., Less toxic "Free of" Lower GHG emissions No single use plastic Recyclable Shareholder concerns 	 Commitments to UN Sustainable Development Goals Quantitative company goals to Conserve resources Reduce GHG emissions Zero Waste to Landfill 	 Regulatory EU Green Deal / EU Taxonomy "Safe and Sustainable by Design" Evolving restrictions on the use of plastics Other constructs NGO or industry programs

Frameworks

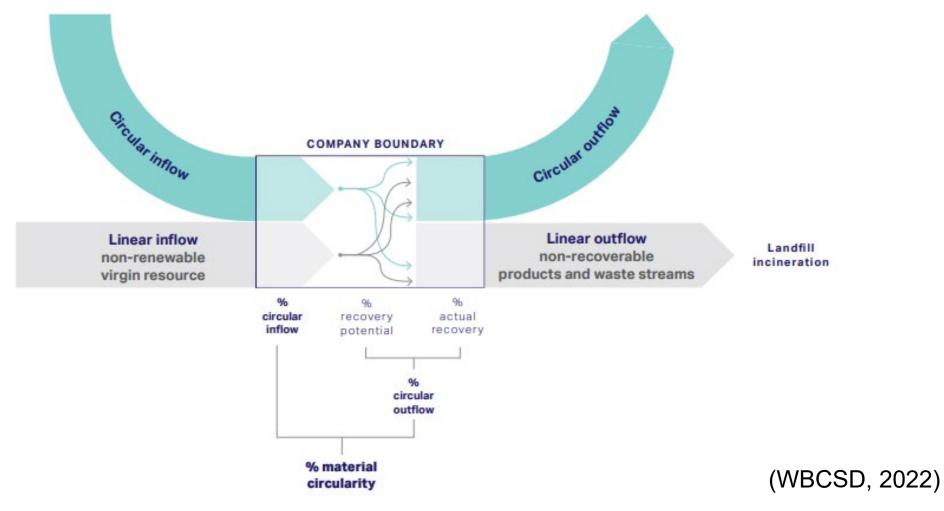
Overview of example frameworks provided for awareness; See the references at the end of this file for more information.

WBCSD Circular Transition Indicator (CTI)

1. Close the loop 2. Optimize the loop 3. Value the loop % critical inflow % critical material Circular material productivity % circular outflow % recovery type **Circular Transition Indicator revenue**

% water circularity

% renewable energy

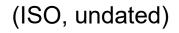


Onsite water circulation

WBCSD CTI Calculations

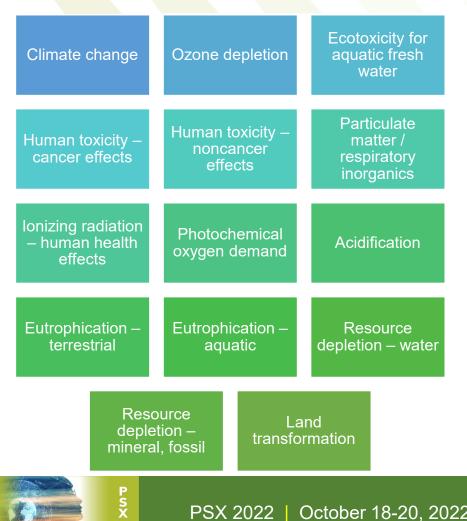
EMF Material Circularity Indicator

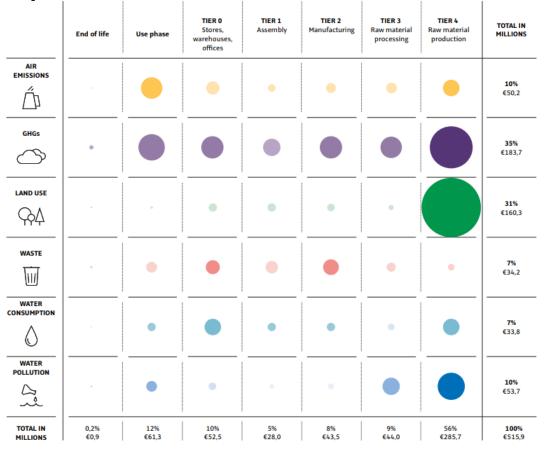
Calculation combines three characteristics:


- Mass of virgin raw material used in manufacture (vs recycled or biological originating from sustained production)
- Mass of waste going to landfill or energy recovery (not recycled, recovered, or composted) attributed to the product
- Utility factor that accounts for the length and intensity of the product's use

(EMF and ANSYS Granta, 2019; See also Circulytics approach, EMF, 2017 a, b)

Frameworks


Originator and Framework	Description
ISO Standards (2024)	ISO/TC 323/WG 1: Terminology, principles, frameworks and management system standard ISO/TC 323/WG 2: Practical approaches to develop and implement Circular Economy ISO/TC 323/WG 3: Measuring and assessing circularity ISO/TC 323/WG 4: Circular Economy in practice: experience feedback ISO/TC 323/WG 5: Product circularity data sheet



Tools to Assess Products

Life Cycle Assessment

Impact Profit & Loss

Challenge #3: Implementation

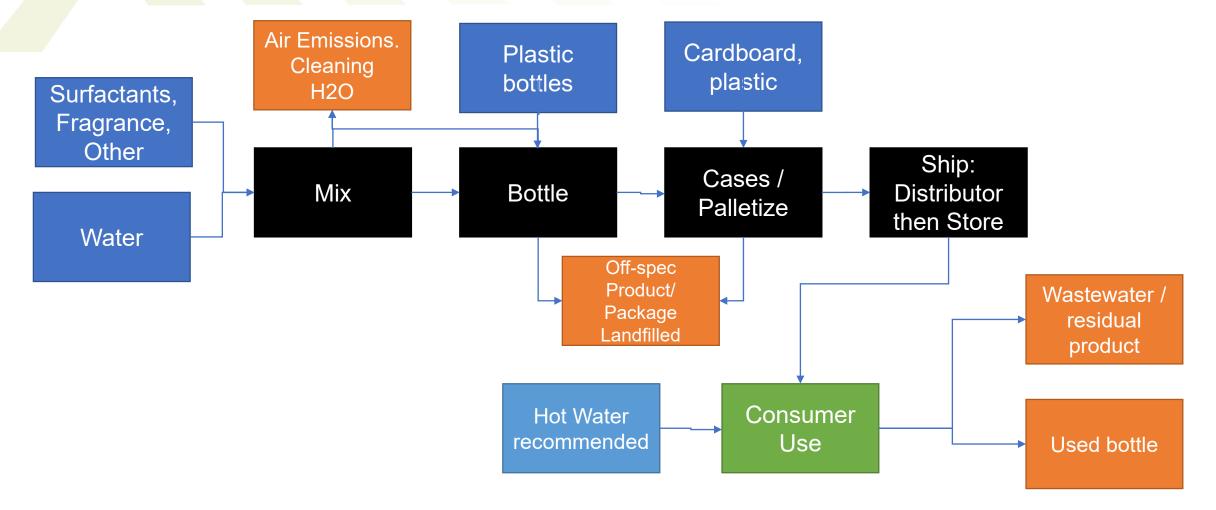
- Initiatives often start with what's obvious, but what's obvious may not have significant impact. Successful programs balance passion and hard-headed quantification.
- Effective programs reflect the company's business model, including the ways in which they work with their suppliers.
- Most companies struggle to compile the data needed to guide and measure their progress.
- Certain actions (e.g., collection of materials for recycling after use) require actions that may be outside of a company's control.
- Circularity can require investments into new partnerships, segments of the supply chain, and technology.
- Companies grapple with the cost implications.

Practice

P S X .org

PSX 2022 | October 18-20, 2022 | Louisville, KY

Group Exercise


Your company's flagship product line comprises cleaning solutions for consumers to use at home. Based on a market study, the CEO wants to position the products as being sustainable, and recently read somewhere about circularity. You've been asked to develop conceptual ideas to make the product more circular.

Based on this information and the process flow diagram on the next page,

- Describe qualitative goals for what you would like to achieve
- identify how you would like to reconsider the way the product is made or used in light of those goals.
- Identify unknowns or aspects of the process/ product that you need to learn more about.

Simplified Process Flow Diagram

P S X .org

Thank you

Kate Sellers

Kate.Sellers@erm.com

P S X .org

References

- Circle Hub, 2022. The Circularity Gap Report. Available at: <u>https://www.circularity-gap.world/2022#Download-the-report</u>
- Ellen Macarthur Foundation, undated. Circular economy introduction. Available at: <u>https://ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview</u>
- Ellen MacArthur Foundation, 2017a. Circulytics measuring circularity. Available at: <u>https://www.ellenmacarthurfoundation.org/resources/apply/circulytics-measuring-circularity</u> (accessed May 31, 2021).
- Ellen MacArthur Foundation, 2017b. Indicator List. Available at: <u>https://www.ellenmacarthurfoundation.org/assets/downloads/Circulytics-question-indicator-list.pdf</u> (accessed May 31, 2021).
- Ellen MacArthur Foundation and ANSYS Granta, 2019.Circularity Indicators: An Approach to Measuring Circularity. Available at: <u>https://emf.thirdlight.com/link/3jtevhlkbukz-9of4s4/@/preview/1?o</u>
- European Commission. 2015. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Closing the loop - An EU action plan for the Circular Economy. Brussels, 2.12.2015 COM (2015) 614 final. Online posting. European Commission. <u>https://eurlex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0614</u>

References (Cont'd)

- ISO, undated. ISO/TC 323 Circular economy. Available at: https://www.iso.org/committee/7203984.html
- Kering, 2020. ENVIRONMENTAL PROFIT & LOSS (EP&L). 2020 Group Result. Available at: <u>https://keringcorporate.dam.kering.com/m/123011b213f0bbf4/original/Rapport-Kering-Environmental-Profit-and-Loss-report-2020-EN-only.pdf</u>
- Kristensen, H.S. and Mosgaard, M.A., 2020. A review of micro level indicators for a circular economy–moving away from the three dimensions of sustainability?. Journal of Cleaner Production, 243, p.118531.
- Niero, M. and Kalbar, P.P., 2019. Coupling material circularity indicators and life cycle based indicators: A proposal to advance the assessment of circular economy strategies at the product level. Resources, Conservation and Recycling, 140, pp.305-312.
- WBCSD, 2022. Circular Transition Indicators v3.0 Metrics for business, by business. Available at: https://www.wbcsd.org/contentwbc/download/14172/204337/1

